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The goals for integrating sensor systems are: (1) to allow 
for sensor variation in reliability, noise and error, (2) to 
accommodate a large number of sensors achieving full sensor 
integration, (3) to isolate heterogeneity in low level modules, 

Dependability, Distributed Agreement, Sensor fusion 

Abstract 

This paper considers distributed sensor systems and finds 
redundant configurations which maximize dependability 
while insuring the system remains within cost or weight 
constraints. Given different sensor modules which fulfill the 
system's operational requirements but have different 
dependability and cost parameters, efficient methods are 
used to find maximum dependability configurations. These 
methods limit the search to a constrained subspace of the 
problem space. It is shown that this region must contain the 
optimal configuration. Three heuristics: genetic algorithms, 
simulated annealing and tabu search are used. Experimental 
results are presented with dependability gains of between 10 
and 15%. These test cases compare results from all methods 
and verify that in most cases the simulated annealing 
heuristic provides the best solutions. 

(4) to enhance flexibility; and ( 5 )  to maintain a common 
representation of the environment [27]. Highly redundant 
sensor systems have several advantages: 
0 Multiple inaccurate sensors can cost less than a few 

accurate sensors [l]. 
Sensor reliability can be increasled [ 1,271. 
Sensor efficiency and performance can be enhanced [27]. 
Self-calibration can be attained [27]. 
More flexible sensor architectur1:s are possible [ 1,271. 

Current problems are [271: 
0 Fusing redundant and multi-sensor readings [5,6,10,17]. 

Methods for self-calibration [7,9]. 
Architectures for improving sensor efficiency[ 171. 
Selecting sensors to improve reliability and resolve 
resource allocation conflicts. An approach using system 
cost and sensor accuracy is in I I]. One minimizing cost 
is in [ll]. This paper presents a methodology which 
considers cost or weight constraints and maximizes 
dependability within those constraints. 
Our approach assumes standardized components allow 

redundancy among heterogeneous components. Good 
The past decade has Seen an explosive growth in the engineering practice dictates the use of commercial off-the- 

study of mUlti-SenSOr fusion and integration for intelligent shelf (COTS) components to reduc,e system complexity and 
systems applications. Sensor integration increases the ability cost, especially for redundant systerris [28]. A sensor interface 
of automated SyStt" to interact with their enViroI"nt by standard from MST allows for the use of heterogeneous 
SYnergisticallY combining readings of independent Sensors components without effecting system complexity [22]. For 
into logical representations [17,211. The use of highly Sensor systems, the use of heterogen1:ous hardware is innately 
redundant sensing systems is one of the primary areas beneficial to system dependability [18]. 
included in  sensor integration; methods not based on N..modular redundancy (NMR) from N 
redundancy have been found particularly sensitive to sensor components in which can be compared to insure 
noise [24]. Redundancy increases dependability, but also correctness [25]. NMR systems may infer correct information 
weight and cost. Success in designing redundant System in the presence of failures in a relatively large number of 
depends on making the best Possible trade-off at least cost. modules, this is the Byzantine Generals Problem (BGP) [201. 

Systems Using redundant Sensors exist in several key BGP algorithms make a unanimous decision in the presence 
areas. Defense applications include ALVs (Autonomous Land of arbitrary errors when less than one third of the modules are 
Vehicles), intelligent pilot's associates, and battle faulty [2]. A similar problem exists for sensor fusion 
management systems [211. Intelligent manufacturing applications. The relationship between sensor fusion and the 
distributed c o m p o n e n t s  with independent Sensors Byzantine Generals problems is explained in [8]. The sensor 
Surveillance systems use distributed sensors and intelligent fusion and BGP extensions to N A ~ R  aid in the design of 
components for 

2 and reliable systems and guarantee that a system will function 
monitoring borders to stop drug smuggling. correctly as long as more than half (in the case of one- 

1 Introduction 

applications like Desert 
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dimensional sensor fusion) or more than two-thirds (in the 
case of Byzantine Agreement) of the components function 
correctly. 

We assume component failure is statistically 
independent. The dependability statistics for components may 
be based on several models. For sensor systems, dependability 
models reflect the problem considered; if the design is 
concerned with mechanical failure then mean-time-to-failure 
and mean-time-to-repair are adequate. For transient and 
intermittent errors, the distributions of fault arrival and 
duration must be known. Our examples use exponential 
distributions for component failure and repair for tractability 
and consistency with reliability literature. Equations are 
derived for systems where over half the components must be 
functional, this can be changed by replacing N/2 as necessary. 

This paper is organized as follows. Section two presents 
metrics for redundant system dependability. The problem 
space for our design problem is presented in section 3, along 
with description of the subspace which must contain the 
optimal choice. Section 4 presents three heuristics used for 
this problem: genetic algorithms, simulated annealing, and 
tabu search. Results from a sample problem is given in 
section 5. Section 6 presents our conclusions. 

2 Dependability Measure of Redundant Systems 

Dependability is used in a generic sense to address either 
reliability or availability. Reliability is the probability that a 
system is functional at the mission time (T). It is used for 
single mission systems where repair is unfeasible. Availability 
is the percentage of time a system will be functional when the 
system reaches a steady state. Availability is used for systems 
which can be maintained and repaired. We describe a 
technique to measure dependability for NMR sensor systems. 

To compute reliability, we either use a Markov model or 
perform a combinatorial analysis. Figure 2 shows a Markov 
chain modeling system dependability (for reliability the 
repair rate p is zero). A set of differential equations can be 
derived directly from the diagram, and solved using Laplace 
transforms or numerically. The combinatorial analysis 
assumes each component has an identical probability of 
success r(t) (= e-ht, if a component has a constant failure rate 
A). Let q(t) = 1 - r(t). The assumption of statistical 
independence allows us to use Bernoulli's law, which finds 
the probability of i out of N components working at time t as: 

The reliability for the system is the summation of the terms 
with i varying from N to LN/2]+1. Both approaches derive the 
same answer. The combinatorial approach has two 
advantages: 1 )  It is independent of the distribution defined by 

system has filed d N i l  or more 
componmts have fded 

Figure 2 Markov cham of avadability model for a system whch  can tolerate failure 
of up to half its components 

the reliability function r(t). 2) It is easier to apply when more 
than one component type is used. 

Consider a system with two component types. If Nl(N2)  
is the number of components of type l(2) the derivation using 
Bernoulli's law can be used to cover the new configuration. 
Consider the cases where no components of type 1 have 
failed, one component of type 1 has failed, etc., up to the case 
where all N I  components of type 1 have failed. These cases 
are disjoint and the sum of their probabilities is one [12]. It 
partitions the sample space giving an expression for system 
reliability at time t in terms of rl(t)  the reliability of 
component type 1, and r?(t) the reliability of type 2. 

The concept can be extended to more component types. 
Evaluating a combination of J different types of components 
requires J levels of summations in  the format of (2). An 
efficient algorithm for this is given in [ 111. 

For availability the repair rate p in Figure 2 is non-zero. 
Since the chain is finite and strongly connected, the system 
represented by the model will reach a steady state. The 
formula for availability is the same as reliability equation (l), 
except component reliability (t) is replaced by component 
availability a(t). For components with a constant failure rate h 
and a constant repair rate p, the steady state component 
availability a will be p/(p+h), and steady state component 
unavailability is 1-a or h/(p+h). Equation (2) and the 
algorithm in [l 11 can also be used if component availability 
replaces component reliability. 

Component dependability is constrained to a range of 
values between 0 and 1. A value of l(0) indicates a 
component never fails(functions). The dependability value of 
a system tends towards zero, remains about 1/2, or 
asymptotically approaches 1 with the increase in  the number 
of components comprising the system, provided the 
dependability measure of the components is less than 1/2, 
exactly 1/2, or greater than 112, respectively. It, thus, depicts 
the "S-Shaped property" described in [ 3 ] .  If components are 
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perfect, system reliability will be 1 no matter how many 
components are used. Fault masking systems are feasible for 
components with dependability values are between 50% and 
100%. Only dependability values within this range should be 
considered. This paper implicitly assumes components fit this 
requirement As long as the system dependability constraint is 
less than 1 and individual component dependability is greater 
than 1/2, system dependability asymptotically approaches 1 as 
the number of redundant components increases. 

3 Subspace Containing Optimal Choice 

A method for determining the dependability of redundant 
sensor system configurations has been derived in section 2. 
Here, we find a model for the most dependable configuration 
that fulfills cost (or weight) constraints. Components have 
either known component reliability (for systems with a fixed 
mission time) or known component availability (for systems 
where the percentage of the time the system is functioning is 
most important.) Each component type is characterized by 
dependability statistics and positive per item cost. 

Cost refers to a limiting factor. Most often this is a 
dollar amount. It may also be weight, power consumption, 
bandwidth or a number of factors. The method presented can 
be directly applied in any of these cases. 

We consider each combination of J component types as a 
point in  a discrete J-dimensional space. The point is 
described by a J-dimensional vector ( X I , X ~  ..., X J )  where each 
xi corresponds to the number of components of type i in  the 
system. If the choice is to be made among three types of 
components, the combination of 2 components of type 1, 25 
components of type 2, and none of type 3 corresponds to point 
(2, 25, 0). Since each type of component has a given per item 
cost it is possible to determine the cost of each combination. 
If component type i has cost ci, the cost of combination 
(2,25,0) is 2*c1 + 25*c, + O*c?. The system cost is: 

J 
'r, CZ *XZ 

Z=O 
We maximize system dependability using equation (2), 

within cost bounds given by a maximum value allowed for 
equation 3. This is a combinatorial optimization problem 
which can not be solved by mathematical programming 
techniques like the Simplex algorithm for linear 
programming, or integer programming. These techniques are 
inappropriate since equation (2) is non-linear [ 131. 

We must find the optimal point in a J-dimensional 
solution space where J is the number of component types 
under consideration. The region with valid solutions is known 
as the feasible set in the J-dimensional space [26].  When N/2 
( N / 3 )  failures can be tolerated, adding fewer than 2(3) 
components to configuration C creating configuration C' 
causes the dependability of c' to be less than the 

Components 
of type 2 

Region 1 ~ These configurations 
violate the cost 
constraint 

configurabons whch 
can not have optunal 

Components of type 1 

Figure 3. The problem space for a 2 dlimensional problem 

dependability of C. C' contains more components which may 
fail than C but the same number of failures can be tolerated in 
both C and C'. 

Theorem 1- Given J different component types with unit 
costs ci. A system is to be designed which tolerates Nlf 
component failures, where N is the total number of 
components in  the system. The configuration which 
maximizes the dependability measure within cost constraints 
must have between 1 and f fewer components than a 
configuration which violates the cast constraint. 

Proof - We divide the problem space into three distinct 
regions: (1) those violating the cost constraint, (2) those 
which do not violate the cost constraint but have up to f fewer 
components than a configuration that violates the constraint, 
and (3) those configurations with more than f components 
fewer than all configurations violating the constraint. 

Configurations in  region (1) are excluded by definition. 
For a configuration C in region (3) with the number of 
components equal to 1 moduloj note that adding fewer than f 
components lowers the configuration dependability. Adding 
exactly f components of any component type, however, gives 
a configuration C' which can tolerake one more failure than C 
and the "S-shaped" property guarantees that C' will have a 
dependability which is greater than the dependability of C. By 
applying the same logic to C' it is shown that configuration 
dependability increases by adding components in quantums of 
f until the resulting configuraticin is in region (1). The 
maximum value must therefore be in region (2). Figure 3 
provides an example problem subspace for two components 
with the regions clearly labeled.O 

4 Heuristics Used 

For non-linear combinatorial optimization problem. The 
problem space has local maxima. To solve problems 
containing a large number of component types a heuristic is 
needed to limit the number of configurations considered. We 
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test three heuristics: genetic algorithms, simulated annealing, 
and tabu search. We use these variables: J as the number of 
component types, ci as the unit cost of component type i, xi as 
the number of components of type i in the configuration, and 
Ni as the maximum number of components of type i possible 
in a configuration. Ni is Lcost limit / til. f(C) refers to the 
configuration fitness function value, (i.e. the dependability 
measure given by equation (2).) All methods use the same 
problem space, each answer is a J-dimensional vector. 
Theorem 1 is used to trivially reject configurations not within 
region (2) for genetic algorithms and simulated annealing but 
not for tabu search.. A brief discussion of each heuristic is 
contained in this section. 

Algorithm: genetic-search 
Inputs: J, di for 1 5 i 5 J, ci for 1 I: i I: J, and D. 
Outputs: Vector L, the most dependable configuration. 
Procedure: 
Step 1: Generate initial gene pool GP of 150 integer 

vectors of length J .  The size, 150, of GP was 
determined by experimentally. GP contains all solo 
configurations of type (0, ... O,Ni,O ... 0) and random 
combinations of components. If an element of GP is 
not within region (2) a component is added or 
removed at random until it is. 

/* percents for elite, crossover and mutation and the 
number of iterations found experimentally */ 
for h = 1 to 150 begin 

end 
for h = 1 to 30 begin 

Step 2: fork = 1 to 500 begin 

fitness [h] = f( GP[ h] ) 

/* keep the elite */ 
GP-next[h] = the h'th most dependable 

configuration in GP. 
end 
for h = 31 to 142 begin /* crossover*/ 

GP-next[h] = randomly combine 2 random 
configurations from GP. 

end 
for h = 143 to 150 begin /* mutants */ 

GP-next[h] = random configurations. 
end 
for h = 1 to 150 begin 

while(GP-next[h] is not in region (2)) add or 
subtract a random component 

end 
GP = GP-next 

end 
jtep 5:  for h = 1 to 150 begin 

fitness[h] = dependability of configuration GP[h] 
end 

l. = the most dependable configuration in GP 

4.1 Genetic Algorithms Figure 4 Pseudo-code for genetic algorithm. 

Simulated annealing attempts to find optimal answers to 
a problem in a manner analogous to the formation of crystals 

random component is added or removed until the 
chromosome is. This strategy is stable since the quality of the 
best answers must be monotonically increasing. Mutations are 
useful since they provide new input to the algorithm. This 
guards against convergence to a sub-optimal answer. 

We initialize the gene pool with a set of reasonable 
answers. They include all single component type 
configurations, and many random configurations. The 
reproduction scheme determines the following generations. 
The algorithm is performed for 500 generations and the best 
solution present in the gene pool at that point is taken to be 
the configuration proposed by the genetic algorithm. There 
are no deterministic means of finding the values for many 
parameters of a genetic algorithm: such as gene pool size, 
crossover rate, mutation rate, and stopping criteria, these 
values have been determined experimentally. The ones we 
used are given in the pseudo-code. We used a genetic 
algorithm as proposed by Holland [15] and modified it to suit 
our application. The algorithm is summarized in figure 4. 

4.2 Simulated Annealing 
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in cooling solids. A material heated beyond a certain point the algorithm's current position a neighboring point is chosen 
will become fluid, if the fluid is cooled slowly the material at random. The cost difference between the new point and the 
will form crystals and revert to a minimal energy state. For a current point is calculated. This difference is used together 
broader treatment of this toDic refer to U91. 

Algorithm: simulated-annealing 
Inputs: J,  di for 1 5 i I J ,  ci for 1 I i I J ,  and D. 
Outputs: Vector L with most dependable configuration. 
Procedure: 
Step 1: Compute dependability of all containing only 1 

Step 2: Make the component with the highest 

Step 3:  CC = ( N I ,  0, ...., 0) /* starting point */ 

Step 4: CC-mod = 1 

component type 

dependability type 1. 

z = 1.0 

While (CC-mod != 0) and 

begin 

I* Initial temperature */ 
step$-iter = 0 

(step4-iter < maximum number for step 4) do 

inner-loop-iter = 0 CC-mod = 0 
While(CC-mod < maximum transitions) and 

(inner-loop-iter < maximum inner loop) do 
begin 

new-CC = random modification of CC 
while(new-CC is not in region (2)) 

AC =f(new-CC) -f(CC) 
if(AC > 0) then 

add or subtract a random component. 

begin 
cc = new-CC 
CC-mod = CC-mod -+ 1 

end 
else with probability of Boltzmann distribution 

AC and 't do 

CC = new-CC 
CC-mod = CC-mod + 1 

begin 

end 
inner-loop-iter = inner-loop-iter + 1 

end 
= 0.9 * z 

step4-iter = step4-iter -!- 1 
end 

Step 5: Output CC as the most dependable configuratior 

Figure 5 Pseudo-code for simulated annealing 

with the current system temperature to calculate the 
probability of the new position being accepted. This 
probability is given by a Boltzmanti distribution e The 
process continues with the same itemperature z for either a 
given number of iterations, or until a given number of 
positions have been occupied, at which time z is decreased. 
The temperature decreases until no transitions are possible, so 
thc system remains frozen in one position. This occurs only 
when AC is positive for all neighboring points, therefore the 
position must be a local minimuim and may be the global 
minimum[23]. To maximize the fitness function it is 
necessary to set the sign of AC appropriately. 

The simulated annealing method used in our research is 
based on the algorithm given in [19,23]. The algorithm has 
been modified so that the parameters being optimized and the 
fitness function are appropriate for our application, and a 
cooling schedule has been found which allows the algorithm 
to converge to a reasonable solution. 

4.3 Tabu Search 

Tabu search modifies an existing heuristic search by 
keeping a list of the nodes in the search space visited most 
recently by the search. These points become "tabu" meaning 
that they are not revisited while on the list. This allows a 
search algorithm to descend from local maxima. Our 
implementation uses a list that is infinite. A detailed 
explanation of tabu search can be found in [14,16]. 

Figure 5 illustrates a greedy lheuristic starting at A. It 
remains at A since A has no neighbors with a larger value. 
Point A is a local maxima and a greedy heuristic would return 
A (5.0) as the maximum. This is incorrect as the maximum 
value is at D (6.1). Tabu search puts points visited on a list 
and forbids movement to these points. At A the tabu list is 
{A} and the only neighbor not in the tabu list is B. From B 
the only neighbor not on the list is C. From C tabu search 
moves directly to the global maximum D. 

The tabu search used here relies on a "greedy" heuristic 
and starts with the most dependable configuration of only one 
component type. The search adds or subtracts one to each xi. 
Configurations on the tabu list, coiifigurations with negative 
numbers of components, and configurations which exceed the 
cost constraint are disqualified. The algorithm evaluates each 
configuration using the fitness function. The search moves to 
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To go from point A to global maximumat point D, the search needs to 
escape from localmaxima such as pointA. 

D(6.1) 

system. For each component type the per item cost, failure 

Algorithm: tabu-search 
Inputs: J, di for 1 I i I J ,  ci for 1 I i I J ,  and D. 
Outputs: Vector L with the most dependable configuration. 
Procedure: 
Step 1: COmpUtef(C) Of all SO10 Configurations. The best SO10 

configuration type becomes type 1. 

Best-Conf = (x~J~,. . . ,xJ) Current-Conf = (xI,x~,. . . ,~J) 

Step 3: Compute dependability for all W neighbors of 

Step 2: XI = N1 xi = 0, 2 5 i I J 

For I := 1 to N do 1" N is determined experimentally "1 

Current-Con$ A neighbor is a configuration which is 
made by adding or subtracting 1 component from any xi 
(22 i Ir). A negative number of components is not 
allowed. Configurations which exceed cost bounds are 
disqualified. If any neighbor is on the tabu list set the 
dependability for that neighbor to zero. 

Step 4: Set Current-Con. to the most dependable neighbor. 
Step 5. If .(Current-Con. > f(Best-Confl 

Step 6. Append Current-Conf to tabu list. 
then Best-Conf = Current-Conf 

end for loop. 
Step 7. return(Best-Conf) 
Figure 5 Pseudo-code for tabu search. 

Tat 

single component type. We call these configurations solo 
configurations. Solo configurations represent current practice 
where heterogeneous redundancy may not be considered. The 
configurations in table 2 are, with one exception, significantly 
more reliable than those currently used. 

When the cost constraint is $52.00 the system 
configuration found by both simulated annealing and genetic 
algorithms is 14% more dependable than the most dependable 
solo configuration. Note that changing the cost constraint to 
$58.00 radically changes the answers found by all three 
methods. This points out the volatility of the problem space 
and the difficulty of finding optimal configurations. 
Increasing the number of components in some of the solo 
configurations is shown to decrease system dependability. 
This is due to the nonlinear nature of the problem space 
which is extremely jagged . 

As implemented, the heuristics always find an answer 
which is at least as good as the most dependable solo 
configuration. That solo configuration is used as an initial 
condition for the heuristics. If significantly better 
configurations exist, the heuristics tend to identify 
configurations which are superior to the solo configuration. 
Due to the non-deterministic nature of simulated annealing 
and genetic algorithms and the non-linearity of the problem 

79% 
81% 

7 ~ 79% 

Solo De . 5 8  

79% 

larger. the configuration becomes the best fit found. Figure 6 rate and repair rate are given, as is the cost constraint wh :h 



show that, in spite of this, the practical results are very 
promising. 

Table 2 

I GA 

Table 3 

3 I $53.70 I 93% 1 

SA 3 

Cost limit $58.00 I 
Tabu 1 7 I $56.00 1 91% I 

The results given in section 5 illustrate several important 
points. Heuristics provided configurations which significantly 
increased system dependability relative to the solo 
configurations. None of the approaches used is guaranteed to 
find the optimal configuration. That could only be guaranteed 
by an exhaustive search of the entire search subspace defined 
by theorem 1. For problems with J component types this 
search space has J dimensions and an exhaustive search 
becomes computationally intractable for only moderately 
sized values of J .  

Simulated annealing consistently found solutions which 
were as good as, or better, than the solutions found by the 
other two methods. The results found by tabu search were 
often inferior to the results of both genetic algorithms and 
simulated annealing. Since the quality of the results found by 
each heuristic depends on implementation details, such as the 
cooling schedule for simulated annealing, the reproduction 
strategy for genetic algorithms and the length of the tabu list 
for tabu search, it is possible that modifications of these 
parameters could result in programs which provide answers 
superior to those found by our implementations. 

The use of at least two heuristics for this problem is 
recommended to provide an independent verification of the 
quality of the configuration chosen. Our results indicate that 

simulated annealing and genetic algorithms are the most 
promising heuristics for this application. 

This paper presents a methodology for sensor selection 
which successfully produces dependable multi-sensor 
configurations from components whose dependability 
statistics are known. These results are significant because: 

Near optimal dependability is maintained within cost.. 
Cost may be either a dollar sum or system weight. 

0 Computational results demonstrate the method. 
0 Implementation details are provided. 

They find good configurations for multi-sensor system. 
The resulting systems are more dependable than current 
practice. While this methodology is of general interest, it is 
especially significant for space and aeronautics applications 
where weight and dependability are factors of importance. 
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